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Abstract—In this paper an efficient indoor localization
algorithm based on confidence-interval fuzzy model (IN-
FUMO) is presented. The width of the confidence interval is
essential within the proposed fingerprinting method for cal-
culating weights, which are then taken into account while
searching for the K nearest neighbours in the database
of fingerprints. For each beacon in the test room a new
confidence-interval fuzzy path-loss model composed of
several local linear models is constructed. The map of fin-
gerprints is then constructed of a set of confidence-interval
fuzzy models. By their consideration the localization ac-
curacy is significantly improved in comparison with other
commonly used path-loss models. The most important
novelty of this paper is the introduction of the confidence
interval within the fingerprinting method, which additionally
improves localization results. The platform of the localiza-
tion system is developed on the basis of a smartphone and
Bluetooth beacons. Therefore the localization algorithm
has to be optimized in order to be computationally efficient,
which is essential for real-time processing and low energy
consumption on a smartphone.

Index Terms—fuzzy model, confidence interval, indoor
localization, fingerprints, nearest neighbours.

I. INTRODUCTION

In recent years, the rapid developments in mobile and
communication technologies have encouraged many studies in
the field of localization and navigation in indoor environments.
Smartphones are becoming almost indispensable accessories
of people, not least because of the possibility to use them as a
personal navigation system (PNS). While outdoor localization
is, to a large extent, a solved problem, for indoor environments
it is still not clear as to which localization approach and
technology will dominate. An accurate localization system that
can also operate in an indoor environment has a lot of practical
value, since it can be built into a personal navigation system
for guiding people through shopping malls, museums, airports,
public institutions, etc. Such a system would be particularly
useful for blind people.

Since modern mobile devices can receive various radio
signals, different approaches to localization using cellular
networks (GSM, LTE) [1], Wi-Fi networks [2], Bluetooth
[3], FM signals [4], NFC connections [5] etc., have been
established. For radio-based localization systems a crucial step
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is to measure the various parameters of the radio signals (e.g.,
the signal strength – RSSI, the MAC address of the transmitter,
the packet transmission frequency) traveling between a mobile
device and a group of base-stations [6].

Due to signal reflection and absorption, the signal-strength
measurements contain a lot of noise. Therefore, to achieve
a high localization accuracy, great emphasis needs to be
placed on the construction of models that describe the signal’s
attenuation. The propagation of Wi-Fi or Bluetooth signals
can be described using the Log Distance Path Loss (LDPL)
model [7]. The latter represents a simple way of modeling
the signal’s spreading, without taking into account influencing
factors such as time changes, the presence of people and
other obstacles in the area, and dynamic changes to the signal
coverage. Often, the description of the measurement using
LDPL models is not accurate enough, which means it is
necessary to use a more sophisticated approach to modeling,
e.g., Gaussian processes [8], neural networks or the fuzzy
identification of nonlinear models [9]. The identification of
nonlinear static and dynamic processes is a well-established
scientific field, which has already been covered by many
authors [10]–[16]. Hartmann and others [17], [18] showed
with numerous examples that the SUHICLUST (Supervised,
Hierarchical CLUSTtering) algorithm, which is based on an
iterative identification approach, has enormous potential for
solving the problem of the identification of nonlinear models.
The algorithm partitions a data set into many clusters and de-
termines the corresponding local linear models. Some authors
[19], [20] have also suggested the use of interval type-2 fuzzy
logic in the learning phase of RSSI-based indoor localization,
but they have achieved only a few meters’ accuracy. A type-2
fuzzy model includes information about the confidence interval
which could be exploited for the purpose of improving the
localization results, but this still has not been done in existing
solutions.

The SUHICLUST algorithm has been chosen in our case for
the construction of interval fuzzy models of signal strengths,
since it is very efficient and easier to implement than interval
type-2 fuzzy logic [17], [18]. In path-loss modeling, great
emphasis was placed on the corresponding confidence interval,
which gives very useful information, since it allows us to deter-
mine the level of confidence in the model for a selected input
(i.e. distance to the transmitter) and to verify the adequacy of
the model. The fuzzy confidence-interval identification was
discussed by many authors [21], [22] but its practical use
is still not widespread. In our case, the efficient use of the
confidence interval is the most important idea that results in a
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very promising outcome. To obtain the desired localization
results, the selection of localization method (Section II) is
also very important, since it needs to take advantage of the
confidence interval.

The paper is organized as follows. In Section II. an introduc-
tion to indoor localization is given. Section III. provides the
summary of the interval fuzzy modeling with the SUHICLUST
algorithm. Section IV. describes the fuzzy confidence-interval
model’s identification. In Section V. the fingerprinting method
is described, where the use of the fuzzy confidence interval
is proposed. Section VI. presents the results of the path-
loss model’s construction and pedestrian localization using a
smartphone. Concluding remarks are presented in Section VII.

II. INTRODUCTION TO INDOOR LOCALIZATION

In previous studies, it was shown that the most accurate
form of radio localization can be performed using a Wi-
Fi or Bluetooth network [2]. The Bluetooth network (based
on Bluetooth Low Energy (BLE) [23]) has many advantages
over Wi-Fi [2], [24]: the lower energy consumption of the
receivers (smartphones) and transmitters (a button-cell battery
can supply transmitters for several months or even years), the
low price of the transmitters, the greater robustness (signals
contain less noise), and the smaller dimensions of the inte-
grated circuits. In addition, a Bluetooth receiver can refresh
the parameters of the network at a higher frequency (up to 50
Hz).

The location of the mobile device can be easily determined
by measuring the strengths of radio signals (the reduction in
the signal strength is proportional to the distance from the
transmitter) emitted by base-stations and the use of trilateration
[25].

In the field of localization three approaches based on an
analysis of Wi-Fi or Bluetooth signal strengths have been
established: the methods that consider the strongest base-
station, the methods that require constructing path-loss models,
i.e., models of signal strengths (and use trilateration) and
the methods based on the principle of ”fingerprints”. The
first approach is represented by the proximity-based methods
[26], which are trivial, since the user’s position can be deter-
mined from signal-strength measurements. These define which
transmitter is the nearest to the receiver (since it emits the
strongest signal) and since the positions of the transmitters are
known, the receiver’s position is also approximately known.
The advantage of this approach is computational simplicity,
while the disadvantage is low accuracy, which is dependent
on the number of transmitters (density) [25].

In the second approach, which involves the building of
signal-strength models (which describe the signal path loss for
each transmitter), the position of the user’s mobile device is
determined by using these models that define the distances to
the transmitters according to the measured signal strengths on
the mobile device. In this way a circle on which the receiver
can be located is obtained for each transmitter. The point at
which the receiver is located is then determined with a geo-
metrical technique – trilateration [27], [28]. This localization
approach is relatively effective and easy to implement, but

the achieved accuracy is not very high (accuracy to a few
meters [29]), since signal reflections, noise, absorption and
interference due to the presence of obstacles, such as doors,
walls, ceiling, people, etc., affect the measurements of signal
strengths (the signal strengths vary continuously). Therefore,
the models of signal strengths need to be designed in such a
way that they take into consideration the changes in the area.

The third approach is represented by the fingerprint-based
methods [30], [31], which are easy to implement and less
sensitive to the noise of radio signals than trilateration [32].
With this method a more accurate position can be achieved
[33] (the accuracy is between 1 m and 5 m on average). A
localization system based on the use of fingerprints usually
consists of two phases, i.e., the offline learning phase and
online positioning phase [34]. In the learning phase, the aim
is to build a database that contains measurements of the
signal strengths from all the transmitters (i.e., fingerprints) for
each grid point of the area [35], [36]. During the stage of
online positioning, the currently measured signal strengths are
compared with the measurements in a database, and according
to which fingerprint best matches the current vector of signal
strengths, the receiver’s position is determined. So at this point
it is recommended to use the method of searching for the
K-nearest neighbours - KNN or K most likely neighbours
[37] or consider the Bayesian rule [38]. When the nearest
neighbours (fingerprints) are known, the current position of
the receiver is determined as the average of the coordinates
that belong to them.

Mirowski et al. [39] proposed an algorithm that takes into
account the probability distribution (described by histograms
instead of a Gaussian curve) instead of individual signal
strengths at the reference point. They used Kullback-Leiber
divergence for determining the similarities between the fin-
gerprints, and kernel regression to carry out the localization.
The authors showed that their approach is superior to solutions
based on the use of the KNN method, the Kalman filter or
a particle filter, since they achieved an average positioning
accuracy of ∼1 m.

In Fig. 1 the schematic representation of the proposed
indoor localization system is shown. It consists of offline and
online procedures which are performed either on the server
or on a smartphone. All the key elements of the system are
described below.

III. CONSTRUCTION OF FUZZY MODELS

The SUHICLUST algorithm [17], [18] makes it possible to
identify nonlinear systems. The resulting model is composed
of several local linear sub-models. SUHICLUST combines
the advantages of supervised learning, since it includes a
hierarchical algorithm (which takes into account model errors
during further data partitioning), which is based on heuristic
tree construction, and the advantages of fuzzy clustering (unsu-
pervised learning). The contributions of the linear models are
determined by the weights (membership functions), obtained
in the process of fuzzy clustering. During the algorithm’s
initialization step the maximum number of local models (this
is equal to the number of clusters) or maximum permissi-
ble global error must be defined, since they determine the
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Fig. 1. Schematic representation of the indoor localization system

maximum number of iterations. The input space is incre-
mentally subdivided according to the membership functions
(obtained with the clustering algorithm), which, at the same
time, determine the contributions of individual local models.
The parameters of the local linear models can be easily and
efficiently estimated by local or global least-squares (LS)
methods. The model’s complexity increases incrementally, and
the algorithm is terminated when the error is small enough, or
the maximum number of local linear models is generated.

The structure of the SUHICLUST model is in the form of
a Takagi-Sugeno (T-S) fuzzy model. The latter can be used
as a nonlinear approximator for a nonlinear static function or
a nonlinear dynamic model approximation [40]–[42]. In the
algorithm the membership functions have the form of Gaussian
functions.

The output ẑ(ui) (T-S) of the fuzzy model with nu inputs
ui is defined as the interpolation of nc outputs of linear models
(Fig. 2) ẑk(ui) = θ̂Tk ui + θ̂k0, where k = 1, . . . , nc and
i = 1, . . . , N (θ̂k = [θ̂k,1, . . . , θ̂k,nu]

T are the parameters of
the local linear model and N is number of all the input-output
measurements):

ẑ(ui) =
nc∑
k=1

ẑk(ui)φk(ui), (1)

where ui = [ui,1, . . . , ui,nu]
T . The φk represents normalized

membership functions (or weighting functions), which de-
scribe the regions and contributions of the local linear models
to the final global model or its output.

The weighting functions, which determine the contribution
of the local models, can take a value between 0 and 1. Thus,
the sum of the contributions of all the local models is equal
to 1 everywhere in the input space:

nc∑
k=1

φk(ui) = 1, φk(ui) > 0. (2)

The SUHICLUST uses the Gustafson-Kessel (GK) algo-
rithm [43] in the process of fuzzy clustering. Each clus-
ter is determined by the position of its center ck =

LM1

LM2

LMnc

ui

z(u )i ̂
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Fig. 2. Fuzzy model consists of several linear models

[ck,1, ck,2, . . . , ck,nu, ckz]
T and the fuzzy covariance matrix

Pk.
The fuzzy covariance matrix Pk of the k-th fuzzy cluster

Pk ∈ R(nu+1)×(nu+1) is defined as:

Pk =
N∑
i=1

φ2k(di)(di − ck)(di − ck)T , (3)

where di = [uTi zi]
T (i = 1, . . . , N) is a data vector with

length (nu+ 1) and φk is normalized membership degree of
data vector di to the k-th cluster.

The fuzzy covariance matrix determines the directions and
the variability of the data in the I/O (input-output) space. It can
be decomposed with Singular Value Decomposition (SVD).

The algorithm 1 summarizes the path-loss model identifica-
tion by using SUHICLUST algorithm (the details have been
described in [17]).

IV. FUZZY CONFIDENCE INTERVAL IDENTIFICATION

Let the confidence interval [22] be defined for a new dataset,
given by the same function g ∈ G as in the case of the model
identification. The validation dataset is defined with the set
of measured output values Z∗ = {z∗1 , ..., z∗M} over the set
of input values U∗ = {u∗

1, ...,u
∗
M} : z∗i = g(u∗

i ), where
u∗
i ∈ S (i = 1, ...,M).
In order to define a confidence interval during the fuzzy

identification, firstly the lower fuzzy function f and the upper
fuzzy function f need to be determined in such a way that:

f(u∗
i ) ≤ g(u∗

i ) ≤ f(u∗
i ), ∀u∗

i ∈ S. (4)

Thus, the function g is located with a certain confidence in
the band defined by the lower and the upper fuzzy functions.

The measured output values of the k-th local linear model
(the number of local models is nc) are determined as:

z∗k = [z∗1 , ..., z
∗
M ]T = Ψ∗T

k θvk + e∗k (k = 1, . . . , nc), (5)

where Ψ∗
k = [ψ∗

k,1, ...,ψ
∗
k,M ] stands for the regression matrix

of the k-th local linear model and θvk = [θk0 θ
T
k ]
T are the
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Algorithm 1 Path-loss model identification
1: Transformation (centring and normalizing) of the process

data.
2: Initialization of parameters (number of clusters, etc.).
3: Computation of covariance matrix.
4: Definition of initial cluster prototypes.
5: GK clustering using all the data.
6: while (End criteria is not met) do
7: Computation of normalized membership functions.
8: Computation of parameters of local linear models

using local LS.
9: Quality evaluation of each local linear model.

10: Definition of initial prototypes for the cluster with the
largest local error.

11: GK clustering using only the splitting-cluster’s data.
12: Determination of new initial cluster centres.
13: GK clustering using all the data.
14: Re-transformation of centres and fuzzy covariance

matrices.
15: Computation of normalized membership functions for

re-transformed data.
16: Computation of parameters of local linear models

using global LS.
17: Computation of the output of the fuzzy model (1).
18: end while

model parameters. ψ∗T
k,i(u

∗
i ) = φk(u

∗
i )[1 u

∗T
i ] represents the

regression vector.
The output of the k-th local linear model is in the case of

the validation dataset is defined as follows:

ẑ∗k = Ψ∗T
k θ̂vk , (6)

where θ̂vk = [θ̂k0 θ̂
T
k ]
T are the parameters of the k-th model,

determined with the least-squares method (considering the
vector of the output measurements zk = [zk,1, ..., zk,Nk

]T and
the regression matrix Ψk = [ψk,1, ...,ψk,Nk

]) in the phase of
the fuzzy identification.

To determine the confidence interval, the expected covari-
ance of the residual between the model output and the new
set of data needs to be calculated in each local domain:

cov(z∗k − ẑ∗k) = E{(z∗k − ẑ∗k − E{z∗k − ẑ∗k})
· (z∗k − ẑ∗k − E{z∗k − ẑ∗k})T }. (7)

Considering the same statistical properties of the noise for
the data in the validation dataset (E{e∗k} = 0) and for the
identification set (E{ek} = 0), the expected value of the
error between the measured output and the estimated output
becomes E{z∗k − ẑ∗k} = 0. Therefore, the covariance matrix
(7) can be written as:

cov(z∗k − ẑ∗k) = E{(e∗k −Ψ∗T
k θ̃vk)(e

∗
k −Ψ∗T

k θ̃vk)
T } (8)

and further as:

cov(z∗k − ẑ∗k) = E{e∗ke∗Tk } − E{Ψ∗T
k θ̃vke

∗T
k }

− E{e∗kθ̃TvkΨ
∗
k}+ E{Ψ∗T

k θ̃vk θ̃
T
vk
Ψ∗
k}, (9)

where θ̃vk = [θ̃k0 θ̃
T
k ]
T . In the next step, the equation for the

least-square optimization is taken into account:

θ̃vk = (ΨkΨ
T
k )

−1Ψkek, (10)

where θ̂vk = θvk + θ̃vk . Assuming that both noise sig-
nals (from the identification and validation phases) have the
same statistical properties E{ekeTk } = E{e∗ke∗Tk } = σ̂2

k

(i.e., the variance of ek) and they are mutually uncorrelated
E{eke∗Tk } = E{e∗keTk } = 0, the covariance matrix (7) can
be written as follows:

cov(z∗k − ẑ∗k) = σ̂2
kI + σ̂2

kΨ
∗T
k (ΨkΨ

T
k )

−1Ψ∗
k. (11)

On the basis of the latter covariance, the lower and upper
bounds of the confidence interval [22] for the k-th local linear
model can be defined as:

f
k
(u∗

i ) = ψ
∗T
k,i θ̂vk

− tα,M−nu
σ̂k(1 +ψ

∗T
k,i(ΨkΨ

T
k )

−1Ψ∗
k,i)

1/2,

i = 1, . . . ,M, (12)

fk(u
∗
i ) = ψ

∗T
k,i θ̂vk

+ tα,M−nu σ̂k(1 +ψ
∗T
k,i(ΨkΨ

T
k )

−1Ψ∗
k,i)

1/2,

i = 1, . . . ,M, (13)

where tα,M−nu
is a constant that is obtained from the Stu-

dent’s t-distribution at 100(1−2α) percent confidence interval
or 100(1 − α) percentile, which is defined with the upper
bound (e.g., for 100(1−0.1) = 90 % confidence interval where
α = 0.05, the upper bound represents the 100(1−0.05) = 95th
percentile of the probability distribution). The number of
degrees of freedom is equal to M−nu, where nu is the length
of the vector u. In the equations for the lower (12) and upper
(13) bounds, ψ∗T

k,i θ̂vk represents the output of the k-th local
linear model for the i-th point.

V. FINGERPRINTING METHOD BASED ON INTERVAL
FUZZY MODEL

The localization system addressed in this section is based
on searching the vector of signal strengths, i.e., the fingerprint
RB (within the database or map of fingerprints) that is the
most similar to the current vector of the measured signal
strengths RM from the nearby transmitters.

The localization system based on the use of fingerprints
usually consists of two phases, i.e., the offline learning phase
and the online positioning phase. In the learning phase, the
aim is to construct the map of fingerprints (database) that
contains the measurements of the signal strengths (from all
the transmitters) for all the reference (grid) points in the area
[35]. In the online positioning phase the current vector of the
measured signal strengths RM is compared to the values in
the database, and depending on which reference point best fits
the current vector, the receiver’s position (x, y) is determined.
In many studies the problem of searching for the nearest
neighbour (the most similar vector) was discussed [44].

The map of fingerprints consists of uniformly distributed
points around the area, to which the vectors of the signal
strengths

RB = [R1, ..., Rm] (14)
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from all the available transmitters (the total number of avail-
able transmitters is m) belong. In addition to the information
about the signal strengths the map of fingerprints also contains
the coordinates for each reference (grid) point and the IDs of
the transmitters from which the signals are received.

In the offline learning phase the map of fingerprints is
usually constructed in such a way that a receiver is placed at
all the reference points where the measurements of the signal
strengths from all the available transmitters are taken [45].
A large number of reference points means a time-consuming
process of collecting the measurements in the database [46].

In our case the construction of the map of fingerprints is
somewhat simplified in terms of collecting the measurements,
since the fingerprints are generated by using the models of
the signal strengths R = fR(d). All the necessary data for
obtaining the models are properly gathered while walking
along a path. In this case the receiver’s position is tracked with
a relative localization system that is based on visual odometry
and an inertial navigation system [47].

At the stage of online positioning, the goal is to find the
fingerprint RB within the database (using one of the methods
of searching for the nearest neighbour), which is the most
similar (according to the criterion) to the current vector of
measurements of the signal strengths RM [48].

When calculating the similarity between the vectors from
the database RB and the vector of measurements RM some
of the K most similar vectors are closer to the vector RM

than the others. Therefore, in determining the position the re-
ciprocal interpolation of the K nearest neighbours is preferred.
The contribution of each vector can be determined by using
the method of weighted K-nearest neighbours. The weight β
of each fingerprint is calculated as: βk = 1/lk (k = 1, ...,K),
where lk is the distance between the vector from the database
RBk

and the vector of the measurements RM . In this way,
a contribution (to the position estimation) of more distant
fingerprints is smaller than the contribution of fingerprints that
are close to the vector of the measurements. If xBk

is the
location of the fingerprint RBk

, then the estimated position
of the receiver is defined as:

xM =

K∑
k=1

βkxBk

K∑
k=1

βk

. (15)

A. The use of the fuzzy confidence interval

For all the fingerprints RB or the corresponding signal
strengths RBi (for i = 1, ...,m where m is the total number
of available transmitters) that are obtained with the fuzzy
models, the confidence intervals can be determined depending
on the lower/upper confidence bounds of the fuzzy models. For
each value RBi

= fi(di) (i = 1, . . . ,m) within a particular
fingerprint RB , the width of the confidence interval is defined
as:

δpi = f i(di)− f i(di) (16)

at the selected input di (i.e., the distance between the position
of the i-th transmitter and the position of the fingerprint) where
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Fig. 3. Positions of BLE beacons and all positions in which the
measurements of the signal strengths were made.

f
i
(di) is the lower bound and f i(di) is the upper bound of

the i-th fuzzy model. In this way, an additional vector

δp = [δp1, . . . , δpm]T (17)

is assigned to each fingerprint RB saved in the database.
Based on the width of the confidence interval δpi the weights
of all the elements RBi

within each fingerprint are determined
as:

w = [w1, . . . , wm]T , (18)

where wi = 1/δpi (i = 1, . . . ,m). The weights can be
considered when calculating the distance lw (in the process of
searching for the K nearest neighbours) between a fingerprint
RB and the vector of the current measurements of the signal
strengths RM :

lw =

√√√√ n∑
i=1

wi(RBi
−RMi

)2 (19)

Equation (19) represents the weighted Euclidean distance,
where n is the number of beacon IDs that are present in both
vectors. The difference (RBi

−RMi
) has a greater contribution

to the distance lw if the confidence interval δpi is narrower,
which means that the weight wi is larger (the measurement
RMi

has a larger impact).

VI. RESULTS

A. Results of model construction
In the ∼ 85 m2 laboratory ten Bluetooth beacons (trans-

mitters) from the company Kontakt.io were installed for the
purpose of testing the localization algorithms, which are
based on measuring the signal strengths. The beacons were
distributed throughout the room, as can be seen in Fig. 3. In
order to reduce the impact of the presence of the human body
on the measurements of the signal strengths the transmitters
were mounted at a height of 2 m above the ground.

The measurements of the signal strengths from all ten
stations were acquired in such a way that a pedestrian walked
the routes that are shown in Fig. 3 (from the START point to
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the FINISH point) ten times while the smartphone recorded
the data. The current position of the smartphone was tracked
by the algorithm, which combines the visual odometry and
the inertial navigation system with the extended Kalman filter
[47]. All the positions in which the measurements of the signal
strengths were made can be seen in Fig. 3. This figure shows
that the obtained points slightly deviate from the plotted route
(the lines were marked on the ground), i.e., about 0.5 m. A part
of these errors can be attributed to the localization algorithm
[47], which determines the position relative to the starting
point, and a part to the inaccurate pedestrian walk along the
line.

A path loss (or path attenuation, which is a reduction in
strength that a signal experiences as it travels through the air
or through objects between the transmitter and receiver) can be
described by a mathematical model that takes a general form
of nonlinear equation and has three parameters for distances
d ≥ 1 m:

if ratio < 1 : d = ratio10

else : d = K1 · ratioK2 +K3, (20)

where ratio = R/TXP = R/−59 (TXP = −59 dBm
represents a signal strength at the distance of 1 m).

Fig. 4 (dashed line) shows the fit of the model (20) to
the measurements of the signal strengths from the transmit-
ter with the MAC address D9:50:3B:F6:AA:46 and position
(3.30, 3.65). While collecting the measurements of the signal
strengths for this transmitter along the paths shown in Fig. 3,
many obstacles (walls, pillars, wooden barriers), which cause
the reflection and absorption of radio waves, were present
between the transmitters and the receiver. Consequently, in
Fig. 4 it is clear that the signal strengths are very scattered
(they contain a lot of noise) at the same distance from the
transmitter. In the path-loss model (20) the parameters K1, K2

and K3 are only present in the case when the distance from the
transmitter to the receiver is greater than or equal to 1 m. The
model fit (20) was carried out with a constrained nonlinear
optimization (where a trust-region method was used), with
which the parameters K1, K2 and K3 were obtained.

In this case the signal strengths do not monotonically
decrease with distance from the transmitter and, consequently,
the model (20) cannot fit the data very well. This means that
in one part of the room the signal strengths are well described
by the model, and in the other part (e.g., behind the wall) they
are very poorly described.

By using the SUHICLUST algorithm, the fuzzy identifi-
cation model that describes the signal strength as a function
of the distance from the transmitter was constructed for each
beacon in the room. Fig. 4 shows that a better fit of the model
over the entire range of the distances d can be achieved by
using the SUHICLUST algorithm. Since in this case the entire
model consists of ten local models, a better compromise can
be reached in the sense that the model equally well describes
the signal strengths over the entire circumference around the
transmitter (at a certain distance d), even if the measurements
are very scattered.

In Fig. 4 the upper and lower bounds of the confidence
interval with a confidence level of 95 % are also shown.
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Fig. 4. The fit of the fuzzy model to the measurements of
the signal strengths for the BLE beacon with the MAC address
D9:50:3B:F6:AA:46.
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Fig. 5. The range of errors for all the identified models.

The degree of fit of the model to the measurements of the
signal strength can be evaluated by calculating the root-mean-
square error (RMSE). This is equal to 2.57 for the fuzzy
model (constructed with the SUHICLUST algorithm), which is
shown in Fig. 4. If the model (20) and nonlinear optimization
were used, a much worse result would be obtained, i.e.
RMSE = 4.66.

In Fig. 5 two box plots that show the range of errors for
all the conventional nonlinear models (20) and fuzzy models
can be seen. Rectangular frames, which can be seen in Fig.
5, include 50 % of all the errors for each model. In the figure
the crosses denote the divergent errors, i.e. outliers, which are
higher than Q3 + 1.5 · IQR or lower than Q1 − 1.5 · IQR
(between these two limits 99.3 % of all errors are placed),
where Q1 stands for the first quartile (25th the percentile), Q3
is the third quartile (75th percentile) and IQR = Q3 − Q1.
Fig. 5 shows that the range of errors is smaller for the fuzzy
models, especially for model 6, which belongs to the beacon,
the measurements of which are shown in Fig. 4.

By the use of other algorithms for nonlinear identification,
e.g., LOLIMOT [17], the results of model fitting could be
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as good as those obtained with algorithm SUHICLUST. But
the major contribution represents the introduction of the con-
fidence interval to the interval fuzzy models and its intuitive
usage in the fingerprinting method.

B. Localization results

In order to evaluate the developed localization algorithm,
which is based on the proposed fingerprinting method, the
measurements of the signal strengths were acquired with an
Android smartphone along the path shown in Fig. 3. A vector
of signal strengths RM from which the current position was
determined was created each time the receiver measured at
least one new signal strength that was greater than −90 dBm.
In our example, this occurs on average every 30 ms. In order to
determine the accuracy of the localization algorithms, a real
receiver’s (smartphone) position where the vector RM was
created, was also recorded.

In order to obtain a unique solution for determining the
current position, the vector of signal strengths RM must
include the measurements from at least three transmitters. It
turned out that the greatest positioning accuracy was achieved
when the vector RM contained five measurements from
different beacons. By increasing the number (over five) of
measurements from different transmitters in each vector, RM

the localization accuracy was no longer improved.
To determine the current receiver’s position with the fin-

gerprinting method, only one nearest neighbour (K = 1)
to the vector RM needs to be found within the database
of fingerprints. But since the positions of the fingerprints
within the map are sparse, it is recommended to use several
nearest neighbours to achieve greater accuracy in the online
positioning. The simulation results showed that the localization
accuracy was the highest when 23 of the nearest neighbours
were taken into account (the sum of the position errors
decreased by 18 %).

In order to compare the fingerprinting method with the
well-established trilateration [29] and experimental method,
which is based on particle-swarm optimization (PSO) [49],
[50], Fig. 6 was generated. The latter shows the results of
the indoor positioning with three different methods, where the
path-loss models were constructed with conventional nonlinear
models (20). In all the mentioned methods, the measurements
of the signal strengths from five different beacons were used
when determining the current receiver’s position. Fig. 6 shows
that the best localization results can be obtained with the
fingerprinting method, where in 92 % of position estimates
the error is smaller than 1 m or in 42 % of estimates it is
smaller than 0.5 m. In this case the maximum error is 2.3 m.
When using the trilateration method the maximum error is
substantially smaller (about 1.7 m), but the overall results are
poorer, since in 78 % of position estimates the error is smaller
than 1 m or in 23 % of estimates it is smaller than 0.5 m.
When using the PSO method the maximum error is less than
1.4 m, which is a considerably better result than when the
positions are determined with the trilateration or fingerprinting
method. However, the overall results are not as good as with
the fingerprinting method, since the error is smaller than 1 m
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Fig. 6. The results of indoor positioning obtained by using the fin-
gerprinting method, trilateration and PSO respectively. The path-loss
models were constructed with conventional nonlinear models (20).
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Fig. 7. The results of indoor positioning using the map of fingerprints
that was constructed with the nonlinear models (20) or the fuzzy models.

in 91 % of the position estimates or it is smaller than 0.5 m
in 31 % of estimates.

According to the obtained results (Fig. 6), it can be con-
cluded that the fingerprinting method is the most appropriate
for indoor localization based on Bluetooth signal strengths,
since it is accurate and fast, which is important for real-time
processing on less powerful devices. When testing the localiza-
tion algorithm in the Matlab environment, the fingerprinting
method spends only 2 ms to calculate a position, while the
trilateration method spends 60 ms. The fingerprinting method
also provides the most intuitive way of using fuzzy models
and the corresponding confidence intervals as it is explained
in subsection V-A. Therefore, the fingerprinting method was
selected to be used in combination with the interval fuzzy
models and conventional nonlinear models (20) in the final
evaluation of the localization algorithm (Fig. 7).

In the first case when the map of fingerprints was con-
structed using the nonlinear models (20), the receiver positions
were less accurately determined, especially in the last part of
the path (Fig. 7). In the second case the fuzzy models were
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TABLE I
SUMMARY OF LOCALIZATION RESULTS

Approach Errors < 0.5 m Errors < 1 m

Trilateration 23 % 78 %

PSO 31 % 91 %

Fingerprinting 42 % 92 %

Fing. and Fuzzy mod. 43 % 97 %

Fing. and INFUMO 53 % 99 %

used for creating the map, and as can be seen in Fig. 7 the
localization results were significantly improved. In this case
the average error was 0.51 m (or 0.68 m without low-pass
filter), and when the nonlinear models (20) were used, the
average error was slightly higher, i.e., 0.57 m (or 1.25 m
without low-pass filter).

By considering the weights (18) in the calculation of the
Euclidean distances (in the process of searching the K nearest
neighbours within the database of fingerprints) the positioning
errors were further reduced. In determining the positions along
the path that is shown in Fig. 7 the average error was reduced
by 6 % (from 0.51 m to 0.48 m) which represents a significant
improvement.

A more detailed comparison of the localization results can
be performed with the graph of the cumulative distribution
function, which is shown in Fig. 8. It can be seen that the solid
curve (obtained on the basis of the positioning errors when
interval fuzzy models with confidence intervals are used) has
a greater slope than the dashed curve (obtained on the basis
of positioning errors when nonlinear models (20) are used),
which means that the greater part of the errors is concentrated
at lower values than with the dashed curve. The solid curve
also has a greater slope than dash-dot curve, which is obtained
with fuzzy models but without considering the confidence
intervals and proposed fingerprinting method. Fig. 8 shows
that the error is smaller than 1 m in 99 % of position estimates
or it is smaller than 0.5 m in 53 % of estimates if the interval
fuzzy models with confidence intervals are used. When using
the nonlinear models (20), the error is smaller than 1 m in
92 % of the position estimates or smaller than 0.5 m in 42 %
of the position estimates. In Fig. 8 it can be seen that the
usage of the confidence intervals within fingerprinting method
significantly improves localization results, since the number of
localization errors which are smaller than 0.5 m is increased
by 10 % and the number of localization errors which are
smaller than 1 m is increased by 2 %. Table I summarizes the
localization results, where the first three results were obtained
with conventional nonlinear models (20) and the last two
results were obtained with fuzzy models. From those results it
can be concluded that the combination of confidence-interval
fuzzy models (INFUMO) and improved fingerprinting method
is the most promising low-cost indoor localization solution
which, due to high accuracy, has a great potential.

VII. CONCLUSION

In this paper a sophisticated approach to indoor localization
using the interval fuzzy model and the improved fingerprinting
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Fig. 8. Cumulative distribution functions for the positioning errors in
determining the positions by the use of fingerprints that were generated
by the nonlinear models (20) or fuzzy models.

method, based on the confidence interval, is presented. The
developed indoor localization system, which is based on the
use of Bluetooth beacons and a smartphone, can operate
in real time and consumes very little energy. The fuzzy
models, which consist of a set of local linear models, more
accurately describe the changing of the signal strengths with
increasing distance from the transmitters than conventional
nonlinear, path-loss models, even when the measurements are
very scattered due to the presence of obstacles. With the use of
fuzzy models the localization accuracy is improved by around
45 %. To construct accurate path-loss models, in addition to
the efficient SUHICLUST algorithm, a suitable collection of
measurements of the signal strengths is required. In our case
the measurements are obtained quickly and easily using the
visual odometry and inertial navigation system. Consequently,
with the path-loss models taken into consideration, the map
with the selected density of fingerprints is quickly built. By
determining the confidence interval for each fuzzy model and
by using the proposed fingerprinting method the localization
accuracy is improved by 6 %. This improvement presents
an important contribution to indoor localization since the
developed localization system outperforms the existing low-
cost localization systems. Namely, with an average error of
0.48 m it is way ahead of the rest. With such excellent results
many doors will open for the developed localization system,
as it can be used for guiding autonomous mobile systems or
people inside buildings.
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